Leveraging fine-tuned Large Language Models with LoRA for Effective Claim, Claimer, and Claim Object Detection
Sotiris Kotitsas, Panagiotis Kounoudis, Eleni Koutli, Haris Papageorgiou
Main: Factual Content in NLP Oral Paper
Session 2: Factual Content in NLP (Oral)
Conference Room: Marie Louise 1
Conference Time: March 18, 11:00-12:30 (CET) (Europe/Malta)
TLDR:
You can open the
#paper-391-Oral
channel in a separate window.
Abstract:
Misinformation and disinformation phenomena existed long before the advent of digital technologies. The exponential use of social media platforms, whose information feeds have created the conditions for many to many communication and instant amplification of the news has accelerated the diffusion of inaccurate and misleading information. As a result, the identification of claims have emerged as a pivotal technology for combating the influence of misinformation and disinformation within news media. Most existing work has concentrated on claim analysis at the sentence level, neglecting the crucial exploration of supplementary attributes such as the claimer and the claim object of the claim or confining it by limiting its scope to a predefined list of topics. Furthermore, previous research has been mostly centered around political debates, Wikipedia articles, and COVID-19 related content. By leveraging the advanced capabilities of Large Language Models (LLMs) in Natural Language Understanding (NLU) and text generation, we propose a novel architecture utilizing LLMs finetuned with LoRA to transform the claim, claimer and claim object detection task into a Question Answering (QA) setting. We evaluate our approach in a dataset of 867 scientific news articles of 3 domains (Health, Climate Change, Nutrition) (HCN), which are human annotated with the major claim, the claimer and the object of the major claim. We also evaluate our proposed model in the benchmark dataset of NEWSCLAIMS. Experimental and qualitative results showcase the effectiveness of the proposed approach. We make our dataset publicly available to encourage further research.